Модуль упругости древесины

Содержание:

Влажность древесины

  Влажность это соотношение массы влаги (воды), находящейся в данном объёме древесины, к массе абсолютно сухой древесины, выраженное в процентах ( % ). В древесине вода пропитывает клеточные оболочки и заполняет полости клеток и межклеточные пространства. Влага, пропитывающая клеточные оболочки, называется связанной. Влага, заполняющая полости клеток и межклеточные пространства, называется свободной.

Различают следующие степени влажности древесины:

  Мокрая — длительное время находящаяся в воде. Влажность мокрой древесины выше 100 %.

Свежесрубленная (свежепил) — влажность такой древесины от 50 до 100 %.

  Воздушно-сухая — к этой категории относится древесина долгое время хранившаяся на воздухе. Её показатели влажности зависят от влажности окружающего воздуха, но в среднем находятся в пределах от 20 до 35 %.

  Базовая (влажность 15 — 20 %) в зависимости от климатических условий и времени года, такая древесина показывает содержание влаги от 15 до 20 %.

Комнатно-сухая влажность 8 — 12 %

Абсолютно сухая влажность 0 %, древесина высушена при температуре t = 103°C.

  Содержание влаги в стволе растущего дерева изменяется по высоте и радиусу ствола, а также в зависимости от времени года. Например, влажность заболони сосны в 3 раза выше влажности ядра. У лиственных пород изменение влажности по диаметру более равномерное. По высоте ствола влажность заболони у хвойных пород увеличивается вверх по стволу, а влажность ядра не изменяется. У лиственных пород влажность заболони не изменяется, а влажность ядра вверх по стволу снижается.

  Влажность у молодых деревьев выше и её колебания в течение года больше, чем у старых деревьев. Наибольшее количество влаги содержится в зимний период (ноябрь-февраль), минимальное – в летние месяцы (июль-август).

КОЭФФИЦИЕНТЫ УСУШКИ ДРЕВЕСИНЫ, %
Порода Усушка
объёмная в тангенциальном направлении в радиальном направлении
Лиственница 0,52 0,35 0,19
Сосна 0,44 0,28 0,17
Ель 0,43 0,28 0,16
Пихта 0,39 0,28 0,11
Кедровая сосна 0,37 0,26 0,12
Берёза 0,54 0,31 0,26
Бук 0,47 0,32 0,17
Ясень 0,45 0,28 0,18
Осина 0,41 0,28 0,14

История исследования упругости материалов

Физическая теория упругих тел и их поведения при действии внешних сил была подробно рассмотрена и изучена английским ученым XIX века Томасом Юнгом. Однако сама концепция упругости была развита еще в 1727 году швейцарским математиком, физиком и философом Леонардом Эйлером, а первые эксперименты, связанные с модулем упругости, провел в 1782 году, то есть за 25 лет до работ Томаса Юнга, венецианский математик и философ Якопо Рикатти.

Заслуга Томаса Юнга заключается в том, что он придал теории упругости стройный современный вид, который впоследствии был оформлен в виде простого, а затем и обобщенного закона Гука.

Плотность древесины

Что такое плотность древесины

  Плотность древесины — это отношение массы древесины к объёму древесины, то есть плотность определяется массой древесного вещества в единице своего объёма. Выражается плотность в кг/м³.

  Плотность древесины зависит от её влажности. Как и все остальные показатели физико-механических свойств древесины, она определяется при влажности 12 %. Между прочностью и плотностью существует тесная связь. Более тяжелая древесина, как правило, является более прочной. При определении плотности древесинного вещества его массу определяют взвешиванием, а объем рассчитывают по разнице объема образца древесины и объема жидкости, заполнившей пустоты в этом образце.

  По плотности древесины при влажности 12 % все породы делят на три группы:

  • с малой плотностью (540 кг/м³ и меньше-) — бальза, ель, пихта, сосна, кедр, можжевельник, тополь, осина, ива, липа, ольха, каштан;
  • средней плотности (540…740 кг/м³) — лиственница, берёза, бук, дуб, клён, ясень, орех грецкий, рябина, яблоня, груша, вяз (карагач), лещина;
  • высокой плотности (750 кг/м³ и более+) — акация, граб, береза железная, дуб, ясень, самшит, фисташка.

  Необходимо отметить, что почти вся древесина у хвойных пород деревьев, за исключением лиственницы и некоторых видов сосны, имеет низкую плотность.

Естественная влажность

Показатель используют для определения количества воды внутри ствола сразу после спиливания или во время роста. Он определяет качество сушки древесных материалов. Естественная влажность древесины считается изначальной величиной, на основе которой начинают вести расчеты по сушке материала. Если показатель определён неверно, есть риск недосушить или пересушить пиломатериал.

Сколько процентов воды содержится в стволе определяют следующие факторы:

  • строение древесины;
  • пористость;
  • окружающая среда.

Показатели естественной влажности древесины колеблются от 30 до 80% и меняются в зависимости от типа материала. От них отталкиваются перед тем, как определить оптимальный режим сушки для достижения нужного качества сухой заготовки.

У лиственных пород естественная влажность древесины ниже, чем у хвойных. Это связано со строением древесины.  В ели содержится до 90% влаги, в пихте в пределах 92%. Для сравнения в ясеневой древесине всего 36%. Кроме этого, на процент воды в материале влияет состояние окружающей среды. Зимой растения переходят в “спящий режим” и практически не потребляют питательных веществ из земли. Поэтому влажность в летний период намного превышает зимние показатели. Также у свежесрубленной древесины процент влаги значительно выше, чем у давних заготовок.

Задача тех, кто занимается обработкой пиломатериала — снизить влажность до минимально возможного процента. Это делается для того, чтобы заготовки обрели необходимую твердость, прочность. Износ у изделий материал которых прошел процесс сушки успешно существенно ниже.

Влажность также влияет и на размер заготовок. Чем больше усыхает материал, тем меньше по габаритам он становится. Правильная сушка должна быть организована таким образом, чтобы влага испарялась равномерно. Тогда вес и размер заготовки будет стандартным, а сам материал приобретет необходимые свойства. Новейшие способы сушки древесины снижают процент влажности до 6. Этот показатель также зависит от породы, структуры дерева, времени года.

Для строительства сильно высушенная древесина не используется, поскольку она может дать трещину. Количество воды в материале для этих целей снижается следующими способами:

  • Самостоятельное досушивание. Приобретается готовый распил естественной влажности, и раскладывается на участке штабелями. Между рядами досок делаются зазоры с помощью брусков, чтобы воздух свободно циркулировал. Опору надо ставить не реже, чем через 1,5 метра друг от друга, и материал не прогнется. Чтобы дождь или другие осадки не испортили древесину, сверху конструкцию укрывают пленкой или рубероидом. Естественную сушку лучше проводить в теплое время года. Материалы размещаются в тени, под навесом. Тонкие по ширине доски просохнут быстрее, чем толстые. Конструкция устанавливается на прокладки из хвойных веток или защитного материала.
  • Покупка готового материала. В этом случае продавец уже подготовил доски и высушил их естественным способом самостоятельно.
  • Если требуется понизить количество влаги до 15% и ниже, то применяют камерную сушку в закрытом помещении. Такие материалы будут дороже стоить, так как при обработке потребуется большая трата ресурсов. И для строительства такую древесину лучше не использовать, она может дать трещину.

Идеальное применение сухой древесины — мебель и предметы интерьера.

Физическая природа упругости

Любое тело состоит из атомов, между которыми действуют силы притяжения и отталкивания. Равновесие этих сил обуславливает состояние и параметры вещества при данных условиях. Атомы твердого тела при приложении к ним незначительных внешних сил растяжения или сжатия начинают смещаться, создавая противоположную по направлению и равную по модулю силу, которая стремится вернуть атомы в начальное состояние.

В процессе такого смещения атомов энергия всей системы увеличивается. Эксперименты показывают, что при малых деформациях энергия пропорциональна квадрату величины этих деформаций. Это означает, что сила, будучи производной по энергии, оказывается пропорциональной первой степени величины деформации, то есть зависит от нее линейно. Отвечая на вопрос, что такое модуль упругости, можно сказать, что это коэффициент пропорциональности между силой, действующей на атом, и деформацией, которую эта сила вызывает. Размерность модуля Юнга совпадает с размерностью давления (Паскаль).

Модуль упругости фанеры

Фанера – строительный материал, производимый путем склеивания нескольких слоев деревянного шпона. Она очень популяренна, и неспроста. Кроме эстетической ценности, фанера обладает рядом значений параметров, выделяющих её в ряду материалов для строительства. Проходя обработку, фанера приобретает прочность, упругость, влагостойкость.

На характеристики фанеры влияют многие факторы:

  • порода дерева, используемого для шпона;
  • исходное состояние сырья;
  • влажность самой фанеры;
  • тип и состав клея, которым соединяются слои шпона;
  • технология предварительной обработки.

Для фанеры так же рассчитывается модуль упругости и все соответствующие коэффициенты.

Важно то, что модуль упругости фанеры и другие показатели выше, чем у древесины, из которой она была изготовлена. Модуль упругости древесины рассчитывают обязательно перед постройкой кровельных, стропильных систем

Знание внутренних усилий, появляющихся в строительных материалах, важно для безопасности, долговечности постройки. Способность возвращать утраченную форму значимо при выборе материала рукояток ударных инструментов, оружейных лож

Модуль упругости древесины рассчитывают обязательно перед постройкой кровельных, стропильных систем

Знание внутренних усилий, появляющихся в строительных материалах, важно для безопасности, долговечности постройки. Способность возвращать утраченную форму значимо при выборе материала рукояток ударных инструментов, оружейных лож

Плотность

Плотность напрямую зависит от содержания влаги в волокнах. Поэтому для получения однородных показателей измерений, ее высушивают до уровня 12 %. Увеличение плотности древесины приводит к увеличению ее массы и прочности. По влажности лесоматериал делят на несколько групп:

  • Породы с наименьшей плотностью (до 510 кг/м3). К ним относят пихту, сосну, ель, тополь, кедр, иву и орех.
  • Породы со средней плотностью (в диапазоне 540-750 кг/м3). Сюда относят лиственницу, тис, вяз, березу, бук, грушу, дуб, ясень, рябину, яблоню.
  • Породы с высокой плотностью (более 750 кг/м3). В эту категорию входят береза и акция.

Ниже приводится таблица плотности для разных пород деревьев.

Наименование породы

Плотность породы, кг/м3

Акация

830

Береза

540-700

Карельская береза

640-800

Бук

650-700

Вишня

490-670

Вяз

670-710

Груша

690-800

Дуб

600-930

Ель

400-500

Ива

460

Кедр

580-770

Европейский клен

530-650

Канадский клен

530-720

полевой клен

670

Лиственница

950-1020

Ольха

380-640

Орех грецкий

500-650

Осина

360-560

Пихта

350-450

Рябина

700-810

Сирень

800

Слива

800

Сосна

400-500

Тополь

400-500

Туя

340-390

Черемуха

580-740

Черешня

630

Яблоня

690-720

Наименьшую плотность имеют хвойные породы, наибольшую, наоборот, лиственные виды.

Характеристика и состав древесины

Породы сосновых деревьев, выращенные в северных регионах, отличаются от своих собратьев, которые выросли на юге. Именно древесина таких пород используется в строительных работах. Физико-механические свойства этих деревьев отвечают требованиям, предъявляемым к деревянным стройматериалам. Они обладают повышенной прочностью, устойчивостью к воздействию вредителей. Себестоимость сосновых материалов ниже, чем других пород древесины.

Стволы сосны, как и всех хвойных деревьев прямее и стройнее, чем лиственных, дефектов на них меньше. Сосновая древесина отлично поддаётся обработке и отделке. Показатели плотности и твёрдости у неё средние. Прочность высокая. Она поддаётся склеиванию. Все эти качества обусловлены особенностями строения древесины .

В середине ствола располагается сердцевина. Она имеет толщину 0,1 – 0,4 мм. На срезе она имеет форму не совсем правильного круга. Этот слой состоит из паренхимных клеток с тонкими одревесневшими стенками. В состав древесины сосны входят также сердцевинные лучи, трахеиды, смоляные ходы. Волокна ровные. Сосуды, расположенные вдоль ствола, обеспечивают доставку влаги от корневой системы к кроне.

Ядро ствола свежесрубленной сосны обыкновенной отличается от заболони меньшей концентрацией влаги. Функция его преимущественно механическая: оно обеспечивает устойчивость ствола. Годичные кольца хорошо различаются. Более поздние слои темнее ранних.

Характеристики древесины сосны
Характеристика Значение
Плотность 520 кг/м3
Твердость по Бриннеллю 2,5 кгс/мм2
Твердость по шкале Янка фут 380 -1240 фунт-сила

Внешний вид

Древесина имеет следующие внешние свойства:

  • Цвет. Зрительное восприятие отраженного спектрального состава света. Важен при выборе пиловочника в качестве отделочного материала.
  • Окраска зависит от возраста и породы дерева, а также климатических условий, где оно выросло.
  • Блеск. Способность отражать свет. Наибольший показатель отмечают у дуба, ясени, акации.
  • Текстура. Рисунок, образуемый годичными кольцами ствола.
  • Микроструктура. Определяется по ширине колец и содержанию поздней древесины.

Канал ДНЕВНИК ПРОГРАММИСТА
Жизнь программиста и интересные обзоры всего. Подпишись, чтобы не пропустить новые видео.

Показатели используют при внешней оценке качества лесозаготовок. Визуальный осмотр позволяет выявить дефекты и пригодность материалов для последующего использования.

Отличия от других хвойных деревьев

Как же можно отличить древесину сосны от других хвойных, в частности, от ели? Сосна содержит значительно меньше сучков. Она имеет полосатую текстуру. На разрезах чётко видны годичные кольца. Сердцевинные лучи незаметны. Для неё характерны высокие показатели плотности и прочности. Однако это достаточно мягкая и лёгкая древесина. Она отличается повышенной смолистостью, благодаря чему устойчива к гниению и воздействию грибков, паразитов, а также осадков и других атмосферных явлений.

Сосновая древесина обладает высокотехнологичными свойствами, легко поддаётся обработке. Благодаря этому её используют в производстве чаще других хвойных пород. Из неё изготавливают предметы мебели, музыкальные инструменты, тару, применяют в строительстве и отделочных работах.

Изотропия и анизотропия

Модуль упругости является характеристикой материала, которая описывает силу связи между его атомами и молекулами, однако конкретный материал может иметь несколько различных модулей Юнга.

Дело в том, что свойства каждого твердого тела зависят от его внутренней структуры. Если свойства одинаковы во всех пространственных направлениях, то речь идет об изотропном материале. Такие вещества имеют однородное строение, поэтому действие внешней силы в различных направлениях на них вызывает одинаковую реакцию со стороны материала. Все аморфные материалы обладают изотропией, например, резина или стекло.

Анизотропия — явление, которое характеризуется зависимостью физических свойств твердого тела или жидкости от направления. Все металлы и сплавы на их основе обладают той или иной кристаллической решеткой, то есть упорядоченным, а не хаотичным расположением ионных остовов. Для таких материалов модуль упругости меняется в зависимости от оси действия внешнего напряжения. Например, металлы с кубической симметрией, к которым относятся алюминий, медь, серебро, тугоплавкие металлы и другие, обладают тремя различными модулями Юнга.

Твёрдость древесины

  Твёрдость древесины, в первую очередь, зависит от породы. Условия роста дерева также влияют на этот показатель (одна порода древесины может иметь различную твердость в зависимости от окружающих природных условий, в которых росло конкретное дерево). Также на величину твердости влияет влажность древесины. В европейских странах и в России принято измерять твердость по методу Бринелля, в США — по методу Янка (Janka). Твердость древесины в пределах одной породы может отличаться в зависимости от распила (У торцовой поверхности твердость выше, чем у тангенциальной и радиальной в среднем на 30 % у лиственных и на 40 % — у хвойных пород.).

  Суть метода Бринелля заключается в способности древесины сопротивляться внедрению (вдавливанию) в неё более твёрдого тела (индентора). При измерениях по Бринеллю используются инденторы в виде шариков из закалённой стали. Первоначально индентор устанавливают на проверяемом образце древесины, следом прилагается основная нагрузка. Спустя определенное время после приложения, нагрузку снимают и измеряют глубину оставшегося на дереве отпечатка. Рассчитывают твёрдость древесины по Бринеллю таким образом: приложенную нагрузку делят на площадь поверхности отпечатка, при этом соответствующими нормативными документами определены диаметры индентора и время экспозиции.

  При методе Янка также используется индентор в виде металлического шарика, однако оценивается не глубина вдавливания, а сила, которую надо приложить, чтобы вдавить шарик в древесину на половину диаметра.

Все древесные породы по твёрдости делят на три группы:

  1. мягкие породы (торцовая твёрдость равна или меньше 38,5 Мпа). К мягкой древесине относят: ель, сосну, кедр, пихту, тополь, липу, осину, ольху.
  2. твёрдые (торцовая твёрдость породы древесины от 38,5 до 82,6 МПа). К этой группе относятся: берёза, лиственница сибирская, бук, клён, карагач, ясень, яблоня.
  3. очень твёрдые (торцовая твёрдость более 82,6 МПа). В эту группу входят: акация белая,керуинг, берёза железная, самшит, кизил.

Влияние влаги на свойства древесины

Вам будет интересно:Краткая история педагогики: этапы развития, значение и цели

Выделяют несколько видов свойств, зависящих от содержания влаги в древесной структуре:

  • Усушка — уменьшение в объеме волокон древесной массы при удалении из них связанной воды. Чем больше волокон, тем больше влаги связанного типа. Удаления влаги такого эффекта не дает.
  • Коробление — изменение формы лесоматериалов в процессе высушивания. Происходит при неправильной сушке или распиловке бревен.
  • Влагопоглощение — гигроскопичность дерева или способность впитывать влагу из окружающей среды.
  • Разбухание — увеличение в объеме древесных волокон при нахождении материала во влажной среде.
  • Водопоглащение — способность древесины увеличивать собственную влажность путем впитывания капельной жидкости.
  • Плотность — измеряется как масса на единицу объема. С повышением влажности увеличивается плотность, и наоборот.
  • Проницаемость — способность пропускать через себя воду под большим давлением.

После сушки дерево теряет свою природную эластичность и становится более твердым.

Упругость и пластичность древесины. Модуль упругости древесины

Упругость древесины является одной из главных характеристик механических свойств дерева. Упругостью называют способность материала, в данном случае – дерева, сопротивляться деформации под действием механического напряжения.

Упругость древесины зависит от нескольких параметров древесины:

– влажности . Чем выше влажность – тем ниже упругость

– прямослойности . Свилеватая древесина менее упруга, чем прямослойная

– объемного веса. Легкая древесина не так упруга, как тяжелая и плотная

– возраст . Молодая древесина менее упруга, чем зрелая

– размеры сердцевинных лучей. Например, у хвойных пород древесины сердцевинные лучи однорядные и очень мелкие, поэтому такая древесина отличается большой упругостью, невзирая на относительно небольшой удельный вес.

– заболонная древесина менее упруга, чем ядровая.

Модуль упругости дерева

При недлительных нагрузках до напряжений, которые соответствуют пределу пропорциональности (иными словами – до момента, когда процесс деформации окажется необратимым), деформация материала пропорциональна его напряжению, и после снятия нагрузки исчезает. Упругость древесины также именуют жесткостью древесины или деформативностью древесины.

Для определения упругости древесины используют понятия модуля упругости древесины, коэффициента деформации и модуля сдвига . При этом все показатели будут существенно отличаться в зависимости от того, в каком направлении приложена нагрузка – вдоль древесных волокон, тангенциально поперек древесных волокон, радиально поперек древесных волокон.

– Модуль упругости древесины Е – это соотношение между нормальными напряжениями и относительными деформациями. Различают следующие модули упругости: вдоль волокон Еа, поперек волокон тангенциальный Еt, поперек волокон радиальный Еr, модуль упругости при изгибе Еизг;

– Модуль сдвига древесины G – это соотношение между касательными напряжениями и относительным сдвигом

– Коэффициент поперечной деформации дерева µ – это соотношение поперечной деформации к продольной, которые возникают при нагрузке стержня.

Модуль упругости древесины основных пород

Порода древесины Модуль упругости древесины на растяжение , МПа Модуль упругости древесины на сжатие , МПа Модуль упругости древесины на изгиб (статический), МПа
Еа Еt Еr Еа Еt Еr
Береза 18 300 490 670 16 100 520 670 15 400
Ель 14 600 490 690 14 500 430 660 11 000
Сосна 12 100 500 580 12 100 570 690 12 600
Дуб 14 300 890 1 160 14 300 970 1 340 15 400

Модуль упругости дерева исчисляется в МПа, или в кГс/см 2 (1 МПа = 10,19716213 кГс/см 2 ))

Коэффициенты поперечной деформации основных пород дерева

Порода древесины µra µta µar µtr µat µrt
Береза 0,58 0,45 0,043 0,81 0,04 0,49
Ель 0,44 0,411 0,017 0,48 0,031 0,025
Сосна 0,49 0,41 0,03 0,79 0,037 0,038
Дуб 0,43 0,41 0,07 0,83 0,09 0,34

Модуль сдвига основных пород древесины

Порода Gra (МПа) Gta (МПа) Grt (Мпа)
Береза 1 510 870 230
Ель 50
Сосна 1 210 780
Дуб 1 380 980 460

Модуль упругости древесины обязательно учитывается при сооружении кровельных и стропильных систем, поскольку определение внутренних усилий древесины от воздействия нагрузок играет здесь очень важную роль. К тому же, упругость древесины имеет значение при изготовлении ружейных лож, ручек к ударным инструментам, молотам и прочим случаям, где необходимо смягчить толчки.

Пластичность древесины

Говоря об упругости древесины, невозможно не упомянуть о ее антиподе – пластичности. Пластичность древесины – это ее способность изменять форму при воздействии нагрузки и сохранять ее и после воздействия нагрузки. Данный показатель зависит от тех же факторов, что и упругость, однако их действие будет обратным (чем влажнее древесина – тем она пластичней, чем старше – тем менее пластична и т.д.).

Пластичность древесины можно повысить путем пропарки или проварки горячей водой. Такие методы используют при производстве гнутой мебели, полозьев для саней и прочих мест, где пластичность дерева играет ключевую роль. Среди популярных пород древесины наибольшей пластичностью обладают бук, вяз, ясень и дуб. В частности, у бука хорошая пластичность обусловлена множеством крупных сердцевинных лучей, которые изгибают древесные волокна. У вяза, ясеня и дуба при изгибании крупные сосуды, расположенные кольцевыми рядами в годовых слоях, значительно сдавливаются поздней, более плотной, древесиной, чем и объясняется их высокая пластичность.

Татьяна Кузьменко, член редколлегии Собкор интернет-издания “AtmWood. Дерево-промышленный вестник”

Насколько информация оказалась для Вас полезной?

СНиП II-25-80 от 01.01.1982. Деревянные конструкции. Часть 2

для всех видов сопротивлений, кроме смятия поперек волокон

для смятия поперек волокон

1. Ветровая, монтажная, кроме указанной в п.3

Для опор воздушных линий электропередачи

3. Гололедная, монтажная, ветровая при гололеде, от тяжения проводов при температуре ниже среднегодовой

4. При обрыве проводов и тросов

Обозначение расчетных сопротивлений

Примечание. – радиус кривизны гнутой доски или бруска; а – толщина гнутой доски или бруска в радиальном направлении.

3.3. Расчетные сопротивления строительной фанеры приведены в табл.10.

В необходимых случаях значения расчетных сопротивлений строительной фанеры следует умножать на коэффициенты и приведенные в пп.3.2,а; 3.2,б; 3.2,в; 3.2,г; 3.2,к настоящих норм.

3.4. Упругие характеристики и расчетные сопротивления стали и соединений стальных элементов деревянных конструкций следует принимать по главе СНиП по проектированию стальных конструкций, а арматурных сталей – по главе СНиП по проектированию бетонных и железобетонных конструкций.

Расчетные сопротивления ослабленных нарезкой тяжей из арматурных сталей следует умножать на коэффициент 0,8, а из других сталей – принимать по главе СНиП по проектированию стальных конструкций как для болтов нормальной точности. Расчетные сопротивления двойных тяжей следует снижать умножением на коэффициент 0,85.

растяжению в плоскости листа

сжатию в плоскости листа

изгибу из плоскости листа

1. Фанера клееная березовая марки ФСФ сортов В/BB, B/C, BB/C:

а) семислойная толщиной 8 мм и более:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

б) пятислойная толщиной 5-7 мм:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

2. Фанера клееная из древесины лиственницы марки ФСФ сортов B/BB и ВВ/C семислойная толщиной 8 мм и более:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

3. Фанера бакелизированная марки ФБС толщиной 7 мм и более:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

Примечание. Расчетные сопротивления смятию и сжатию перпендикулярно плоскости листа для березовой фанеры марки ФСФ 4 МПа (40 кгс/кв.см) и марки ФБС 8 МПа (80 кгс/кв.см).

1. Фанера клееная березовая марки ФСФ сортов B/BB, B/C, BB/C семислойная и пятислойная:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

2. Фанера клееная из древесины лиственницы марки ФСФ сортов В/BB и ВВ/C семислойная:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

3. Фанера бакелизированная марки ФБС:

вдоль волокон наружных слоев

поперек волокон наружных слоев

под углом 45° к волокнам

Примечание. Коэффициент Пуассона указан для направления, перпендикулярного оси, вдоль которой определен модуль упругости

3.5. Модуль упругости древесины при расчете по предельным состояниям второй группы следует принимать равным: вдоль волокон =10 000 МПа (100 000 кгс/кв.см); поперек волокон 400 МПа (4 000 кгс/кв.см). Модуль сдвига древесины относительно осей, направленных вдоль и поперек волокон, следует принимать равным 500 МПа (5 000 кгс/кв.см). Коэффициент Пуассона древесины поперек волокон при напряжениях, направленных вдоль волокон, следует принимать равным = 0,5, а вдоль волокон при напряжениях, направленных поперек волокон, 0,02.

Величины модулей упругости и сдвига строительной фанеры в плоскости листа и и коэффициент Пуассона при расчете по второй группе предельных состояний следует принимать по табл.11.

Модуль упругости древесины и фанеры для конструкций, находящихся в различных условиях эксплуатации, подвергающихся воздействию повышенной температуры, совместному воздействию постоянной и временной длительной нагрузок, следует определять умножением указанных выше величин и на коэффициент в табл.5 и коэффициенты и , приведенные в пп.3.2, б и 3.2, в настоящих норм.

Модуль упругости древесины и фанеры в расчетах конструкций (кроме опор ЛЭП) на устойчивость и по деформированной схеме следует принимать равным для древесины ( расчетное сопротивление сжатию вдоль волокон, принимаемое по табл.3), а модуль сдвига относительно осей, направленных вдоль и поперек волокон, для фанеры – принимаются по табл.10, 11).

4. Расчет элементов деревянных конструкций

А. Расчет элементов деревянных конструкций

по предельным состояниям первой группы

Центрально-растянутые и центрально-сжатые элементы

4.1. Расчет центрально-растянутых элементов следует производить по формуле

Нормативные характеристики

Показатели нормативного сопротивления необходимы для изготовления разного вида конструкций. Древесина считается пригодной, если показатели не ниже расчетных величин. В испытаниях используют только стандартные образцы с влажностью не выше 15 %. Для древесины с другим значением влажности используют специальную формулу расчетного сопротивления, далее показатели переводят в стандартные значения.

При проектировании деревянных конструкций важно знать фактические значения прочности исходного материала. В реальности они меньше нормативных, получаемых на тестовых образцах

Эталонные данные получают путем нагружения и деформации образцов стандартных размеров.

Химический состав

В 99% массы древесины входят органические вещества. Состав же элементарных частиц для всех пород одинаковый: азот, кислород, углерод и водород. Они образуют длинные цепочки более сложных молекул. Древесина состоит из:

  • Целлюлозы — природного полимера с высокой степенью полимеризации цепных молекул. Очень стойкое вещество, не растворяется ни в воде, ни в спирте, ни в эфире.
  • Лигнина — ароматического полимера со сложным строением молекул. Содержит большое количество углерода. Благодаря нему появляется одревеснение стволов деревьев.
  • Гемицеллюлозы — аналог обычной целлюлозы, но с меньшей степенью полимеризации цепных молекул.
  • Экстрактивные вещества — смолы, камеди, жиры и пектины.

Большое содержание смол в хвойных деревьях консервирует материал и позволяет сохранять первоначальные свойства на протяжении долго времени, помогая сопротивляться внешнему воздействию. Низкосортные лесоматериалы с большим количеством дефектов используют в основном в лесохимической промышленности в качестве сырья для изготовления бумаги, клееной древесины или добычи химических элементов как, например, дубильные вещества, применяемые в производстве кожи.

Относительная влажность древесины

Является ориентировочным показателем. При расчетах за основу берется фактический вес имеющейся заготовки в отношении к абсолютно сухой. Так определяется относительная влажность во всем имеющемся в наличии материале.

Показатель выражается в процентах и посчитать его можно следующими способами:

  • исходя их влажной и сухой массы заготовки;
  • пользуясь данными о количестве влаги в граммах и весе заготовки.

Чтобы расчет оказался верным, требуется произвести практические манипуляции.

  1. От заготовки отрезается образец пиломатериала.
  2. Свежеспиленный образец взвешивается, данные фиксируются.
  3. Далее, он высушивается до абсолютно сухого состояния и взвешивается повторно.
  4. Фиксируется фактическая разница между двумя показателями. Так получается масса воды внутри образца.

Далее, по формуле:

W = mв/mо ×  100

где mв — масса воды, а mо — масса образца в обычном состоянии, высчитывается относительная влажность.

Так можно определить процент влаги по отношению ко всей массе имеющихся пиломатериалов.

Дефекты древесины

Вам будет интересно:Единицы измерения крутящего момента двигателей

Несмотря на явные преимущества перед синтезированными материалами, дерево, как любое природное сырье, имеет свои недостатки. Наличие, степень и область поражения регламентируется нормативными документами. К основным порокам древесины относят:

  • поражение, гнилью, грибками и вредителями;
  • косослой;
  • смоляные кармашки;
  • сучки;
  • трещины.

Сучковатость снижает прочность лесоматериалов, особое значение имеет их количество, размеры и расположение. Сучки подразделяют на виды:

  • Здоровые. Плотно срастаются с телом дерева и крепко сидят в карманах, не имеют гнили.
  • Выпадающие. Отслаиваются и отваливаются после распиловки материала.
  • Роговые. Темного цвета и имеют более плотную структуру по отношению к соседней древесине;
  • Потемневшие. Сучки с начальной стадией гниения.
  • Рыхлые — загнившие.

По месту положения сучки разделяют на:

  • сшивные;
  • лапчатые;
  • заросшие;
  • пасынки.

Косослой также снижает прочность древесины на изгибе и характеризуется присутствием трещин и спиральных слоев в кругляке, в пиловочном материале они направлены под углом к ребрам. Изделия с таким дефектом относятся к низкосортным, используются исключительно в качестве временных укреплений.

Причины появления трещин зависят от внешних условий и породы древесины. Образуются они в результате неравномерного высыхания, морозов, механических нагрузок и многих других факторов. Появляются они как на живых деревьях, так и на спиленных. В зависимости от положения на стволе и формы, трещины называют:

  • морозобойными;
  • серницей;
  • метиками;
  • усушечными.

Трещины не только снижают качество древесины, но также способствуют быстрому гниению и разрушению волокон.

Гниль образуется вследствие заражения гнилостными и другими видами грибков, которые появляются на растущих и спиленных деревьях. Грибы, обитающие на живых стволах, являются паразитирующими, которые поражают годовые кольца и вызывают их отслаивание. Другие виды селятся уже на готовых конструкциях и вызывают гниение, расслаивание, растрескивание.

Причиной появления вредоносных организмов является благоприятная среда для их размножения: влажность более 50% и тепло. На хорошо просушенных лесоматериалах микроорганизмы не развиваются. К особой категории вредителей следует отнести насекомых, которые предпочитают селиться в деревянных конструкциях, делая ходы в них, тем самым повреждая волокна и снижая их прочность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector